
Digital Image Processing using
Mathematica Link for LabVIEW

A demo developed for NI Week 2002

August 14-16, 2002, Austin, TX

Concept and Programming: David J. Ritter – BetterVIEW Consulting

Copyright ©2002 BetterVIEW Consulting – All rights reserved

Digital Image Processing using Mathematica Link for LabVIEW

Objective:

To acquire images into LabVIEW and process them using built-in Mathematica
functions and the Digital Image Processing Add-ons for Mathematica.

Components of the Demo System:

- LabVIEW 6.1

- Mathematica 4.1

- Mathematica Link for LabVIEW (version 2.0)

- Digital Image Processing Add-ons for Mathematica

- Apple PowerBook G4 running MacOS 9.2

- Orange Micro 'iBot' Firewire webcam

Abstract:

This demo was designed to illustrate how LabVIEW-acquired data can be
processed, analyzed, manipulated, and plotted using a combination of
"LabVIEW", "Mathematica", and the "Mathematica Link for LabVIEW". While this
particular demo uses image data, the same approach could be extended to any
type of data that can be acquired using LabVIEW and compatible DAQ hardware.

Overview of the Process:

Because it is a flexible communications toolkit, Mathematica Link for LabVIEW
projects can take many forms. However, the most common configurations will be
one of the following:

1) Projects where a LabVIEW VI is called as a subprocess of Mathematica, and
data is passed via the Link for further processing and analysis in a Mathematica
notebook, and/or

2) Projects where the Mathematica Kernel is called as a subprocess of a
LabVIEW VI.

Both configurations are illustrated in Figure 1 on the next page.

Figure 1. A bi-directional communications mechanism.

The most efficient way to proceed to the second configuration (in the lower half of
Figure 1) often involves some experimentation using the first, or upper
configuration.

With this in mind, we will now define our eventual target: a LabVIEW Image
Processing application that calls Mathematica as a subprocess of LabVIEW. The
front panel for the target application is featured in Figure 2. (More details about
the operation of this VI will follow later in this document.)

Figure 2. The final image processing VI – front panel view.

Development Process:

The first step on the path to our final destination involved some experimentation
within a Mathematica notebook. In the initial planning phase, a LabVIEW VI was
called as a subprocess of Mathematica. For preliminary testing, we used
'MathLink VI Server.vi' and the 'VIClient.m' package (both included with
Mathematica Link for LabVIEW) to call a Quicktime-based image capture VI. The
Quicktime VI was supplied by Christophe Salzmann of EPFL. (Interested readers
should note that this Quicktime capture VI has been featured in LTR articles, and
can also be found on the CD-ROM distributed with "LabVIEW GUI - Essential
Techniques", published by McGraw-Hill.)

The Mathematica-based investigations employed 2 steps:

1) Acquiring the image using the Quicktime VI, and

2) Processing the image in Mathematica.

These two steps are summarized in two Mathematica notebooks:
"CaptureImage.nb" and "Process Capture.nb". The contents of both notebooks
are combined in Figure 3 on the next page . Both of the notebooks depicted can
be found in "LV_Capture_MM_Process.zip". (NOTE: Mathematica 41. or
Wolfram's free Mathematica notebook viewer application are required to view
these files. The viewer and more information can be found online at
wolfram.com.)

Developing the Final VI:

After defining the parameters of the experiment using VI calls inside a
Mathematica notebook, the next step was to develop the MathLink-enabled
LabVIEW VI. We incorporated the Mathematica commands from the initial
Mathematica investigations into string constants on the LabVIEW VI diagrams.
Integration of the Mathematica commands into the LabVIEW VI enabled us to
simplify user interaction and ensure repeatability of our experiments. The final
LabVIEW GUI replaces the command-line Mathematica user interface with a
much easier to use LabVIEW-based user interface.

How it Works:

The front panel for the VI was presented previously in Figure 2. You may want to
refer to this figure again throughout the following examinations.

Interaction with this VI begins in the upper-left area of the panel. For
demonstration purposes, the VI offers two operational modes: "Process Image
File", and "Process Image Capture". The user selects between these modes by
changing pages of the Tab Control. The first mode, "Process Image File" applies
the Mathematica processing steps to .TIF images stored on disk (see Figure 4).
The second mode, "Process Image Capture" uses the same Quicktime image
capture VI used in the initial Mathematica experiments, and captures a 'live'
Firewire image for subsequent processing. This mode will be discussed in the
next section (see Figure 5).

Figure 3. Initial investigations undertaken in a Mathematica Notebook.

Figure 4. Running the VI in ‘Process Image File’ mode.

“Process Image File” mode:

When user selects the first mode, "Process Image File", he or she is presented
with a Pict Ring control with representations of the image files available for
processing. After selecting an image, the user simply presses the Process
button. The analysis and plotting sequence is initiated. The demo performs four
operations on the target image:

1) It generates three histograms, one each for the R, G, and B (red, green, and
blue) channels in the image.
2) It converts the color image to grayscale and displays this grayscale
representation.
3) It uses the grayscale data to generate a 3D density plot of the image.
4) It applies two edge detection filters to the image -- a Sobel gradient filter, and
a Laplacian-of-Gaussian filter , then plots the results.

As reflected in the figure, the results of each step are displayed on the right-hand
side of the panel as they are completed.

Figure 5. Running the VI in ‘Process Image Capture’ mode.

“Process Image Capture” mode:

If the user selects the second mode, "Process Image Capture", the Quicktime
capture window is presented. When a Firewire camera is present, this window
remains open displaying a 'live' camera image. When the user clicks the
‘Capture’ button, the image is captured for subsequent processing. After
capturing a suitable image, the user simply clicks the ‘Process’ button to initiate
the processing step, just as in the "Process Image File" mode outlined
previously.

Additional Comments:

The Mathematica image processing and plotting commands are hard-wired into
the LabVIEW diagrams. However, by simply changing the commands, the
operation of this VI can be modified. In other words, no rewiring is necessary to
completely alter the behavior of this VI!

The basic structure for this VI is a state machine. User interaction takes place in
a single case, as do image processing, initialization, and error handling. The
high-level "Generic Plot.vi" passes the plot requests to Mathematica and
converts Mathematica's Postscript graphics output into bitmaps that can be
displayed in the LabVIEW Intensity Graphs on the right-hand side of the main VI
panel. As noted in the Mathematica Link for LabVIEW User's Guide, conversion
of Mathematica graphics to bitmaps is a multi-stage process. First, Mathematica
processes the plot request and generates a Postscript graphic. This Postscript
graphic is temporarily saved to disk as a graphic file to enable the conversion.

Next, an executable called 'MLPost' is called to convert the Postscript file into
bitmap data and save it to a temporary bitmap file. Finally, this bitmap must be
rendered in the LabVIEW panel. While this multi-step process may seem tedious
to LabVIEW programmers that are accustomed to working entirely in the bitmap
domain, the advantage of Mathematica's Postscript output is that it offers
superior hard-copy output from Postscript-compatible printers. (Naturally,
Mathematica Link for LabVIEW offers tools for outputting the Postscript data
directly in printer-friendly formats.)

Feel free to examine the VI diagrams to see how various Mathematica Link for
LabVIEW components were combined to realize this demo.

MacOS-specific Elements:

This demo was developed to run on MacOS. As a result there are a couple of
Mac-specific features and components worth mentioning.

- The Quicktime Image Capture subVI, based on Chris Salzmann's Quicktime
VIs, can capture images using any Quicktime-compatible video source, including
Firewire camcorders and USB webcams.

- Because LabVIEW is not yet available on MacOSX, this demo was constructed
to run under MacOS 9.2. Unfortunately, MacOS 9.2 doesn't employ a
preemptive multitasking scheme, and the Mac's cooperative multitasking
implementation assigns the highest execution priority to the foreground
application—background processes have substantially less time to execute than
the foreground application. When running Mathematica Link for LabVIEW,
switching the top-most application based on the current processing step can
noticeably improve performance. Therefore, Applescript was used in various
places to switch between LabVIEW, the Mathematica Kernel, and MLPost during
processing. This achieved the desired objective of optimizing Link performance
under MacOS 9.2.

