
Chapter

1
The Case for a Superior GUI

On the surface, designing the graphic user interface (GUI) for your LabVIEW
application appears to be relatively straightforward. Just choose the appropriate
controls and indicators from the Controls palette; drop them on the panel; align,
rearrange, and tweak them into a presentable arrangement; and then wire the under-
lying diagram. Simple enough. So why devote an entire book to this seemingly
trivial task?

In a word: usability. Consider this scenario: You have just put the finishing
touches on your latest LabVIEW application, and now it is time to unveil it to the
world. You sit the first unsuspecting “guinea pig” down in front of your program.
(Maybe the user for this maiden voyage is a friend or colleague, or perhaps you
are not so lucky, and it is your boss or, worse, a customer.) Anyway, you launch
the application and step back in anticipation.

Hoping for the best, but prepared for anything, you scan the expression of this
first unsuspecting user. You, of course, are looking for some small sign of approval
—after all, you have traded several hours of your very existence to bring this bounc-
ing baby application into the world, and as any mother can tell you, the labor of
creation is not an entirely painless pursuit. You watch in anticipation.

Then it starts. Perhaps the first sign is a slightly furrowed brow. Or maybe it’s
the eyes, repeatedly traversing the surface of the computer screen, looking for a
landmark—something, anything familiar. Or maybe it’s that unmistakable look of
a lost child. Those first telling signs can show up in so many different ways.

For a brief, shining moment, self-deception becomes your refuge. “After all,”
you reason, “looks can be deceiving.” This false sense of security is short-lived,
however, and soon, the inevitable—“the question.” The specific wording of the
question is never important; it can take many forms. What cannot be ignored, how-
ever, is the underlying reality it reveals: This person does not have a clue how to
navigate your user interface! Your mind reels. How is this possible? The concept
is so completely natural, the underlying metaphor so elegantly conceived and real-
ized, that it is universally intuitive. Or at least, so it seemed to you.

1

200094_CH01/Ritter 9/12/01 4:20 PM Page 1

Concluding (1) that this would-be user must have somehow “duped” the entire
education system in order to graduate from high school and (2) that your clever
interaction mechanisms are far too sophisticated for the likes of someone so under-
endowed in the IQ department, you seize control of the mouse and begin to demon-
strate. With a puzzled, glassy-eyed stare, this poor, bewildered soul nods obediently
as you expound the virtues of your masterpiece. However, while you are deftly
demonstrating the finer points of your design, you cannot help but notice an unde-
niable sensation developing in the pit of your stomach. Your message is not get-
ting through, and you know it. You start to wonder if maybe, just maybe—and in
some very, very small way—your design is somehow just a little bit responsible
for that vacant stare.

If you have felt the cold sting of user confusion, some parts of this account may
resonate for you. Scenes like this happen to almost every user-interface designer
at one time or another. Even professional designers with formal training and years
of experience have been known to miss the mark from time to time. In fact, sev-
eral high-profile examples have been exposed in vivid Technicolor detail by the
reviewers for the Internet-based “Interface Hall of Shame” (www.iarchitect.com/
shame.htm). If you have ever made an interface design “boo-boo” in the past, at
least you can be thankful that these people did not decide to review it!

On the other hand, maybe you are one of the lucky ones, and this somewhat
disconcerting and potentially embarrassing situation has never happened to you.
Congratulations. With the help of the information contained herein, maybe it never
will. Armed with some of the key underlying principles and philosophies of GUI
design, as well as some practical tips and techniques, you will be better prepared
to identify the potential pitfalls and steer clear of the potholes on the road to a bet-
ter LabVIEW user interface.

Before we plunge in and start laying the foundation for the topics to come, it might
be a good idea to start by looking at the rewards you stand to reap as a direct result
of devoting additional time and effort to your GUI. Consider the points that follow
to be the “carrots” that will spur you on toward user-interface design excellence!

1.1 Motivations for the Superior GUI

A well-designed, thoughtfully executed GUI not only will add quality to your
application but also will provide several advantages in the areas of usability and
marketability. We will look at several specific points shortly, but first, let’s set the
stage.

1.1.1 The Point of Contact

LabVIEW programs—and, in fact, all computer programs—share a single com-
mon purpose: to help people achieve goals. Without a real-world problem look-
ing for a solution, what reason would any of us have to develop a computer

2 Chapter 1

200094_CH01/Ritter 9/12/01 4:20 PM Page 2

program? Sure, wiring a LabVIEW diagram can be enjoyable—at times almost
even cathartic—but there are better ways to pass a Saturday afternoon than build-
ing software that no one will ever use.

You may not have considered it from this perspective before, but your GUI is
the only point of contact end users will ever have with your LabVIEW applica-
tion. In other words, a user’s only view of your application—from meticulous plan-
ning to input-output (I/O) hardware selection, from the painstaking attention to
data structures and data flow through careful wiring of the diagram—in short, the
culmination of all your hours of planning and hard work—is ultimately commu-
nicated completely through the controls, indicators, graphics, and layout of your
application’s GUI. Your application’s usefulness ultimately lies not only in the
integrity of the VI diagrams but also in the clarity and effectiveness of the GUI
and, of course, your end user’s ability to pilot it.

For better or worse, your user’s perception of quality will be shaped not only
by the “look and feel” of the interface but also by the ease with which the intended
application goals can be achieved. Hours of painstaking effort devoted to the fine
detail of the front panels will go unappreciated if the user cannot navigate the inter-
face effectively. And just as surely as a well-executed GUI design will inspire con-
fidence and trust in your application, a bad design ultimately will lead to end-user
confusion and frustration.

Unquestionably, then, GUI design and integration are primary elements that will
have a direct impact on the overall quality and, by extension, success of your appli-
cation. Still, despite this importance, most LabVIEW GUIs receive an inordinately
small allocation of resources. Why is this so? The answer appears to lie in the
assignment of priorities.

When engineers begin to develop an application to solve a difficult technical
problem, naturally, the integrity of the underlying logic receives the highest pri-
ority. GUI planning and integration are assigned a lower priority because, simply
stated, if the software is technically unable to solve the real-world problem for
which it was designed, even the most meticulously crafted GUI in the world will
not save it. While the need for integrity in the underlying logic is unquestionable,
there is another side to this coin that must not be overlooked. If human operators
are unable to run the software effectively—and achieve the expected results—the
best algorithms, implementations, and VI wiring in the world will not save it either!

According to Dick Berry, a senior member of IBM’s Ease of Use Design Group,
a useful analogy can be found with the motion picture industry. “A great film can’t
happen with only a good script; it requires great actors, great directors, great cam-
eramen, and so on to communicate the script in a manner that is truly compelling
to the audience” (Berry, 2000).

At this point you may be thinking, “Sure, I understand the value of the GUI.
That’s precisely why I use LabVIEW. The LabVIEW system takes care of the GUI
so that I can focus on the more important, underlying problems.” While it is true
that LabVIEW lightens the GUI programming load, it must not be forgotten that
most of the advantages appear during execution—in the drawing and management

The Case for a Superior GUI 3

200094_CH01/Ritter 9/12/01 4:20 PM Page 3

of on-screen GUI objects. The critical areas of layout, design, and interaction mod-
eling are still up to you. Clearly, the GUI objects on the Controls palette are the
building blocks for your GUI, just as the functions on the Functions palette are
the building blocks for your VI diagrams. It follows, then, that just as a well-
designed VI diagram depends on planning and the careful application of functions
and sub-VIs, a well-designed GUI depends on planning and the careful selection
and application of controls and indicators.

If you think about it, a well-crafted GUI adds an additional challenge—not only
must the front-panel elements be considered carefully, and arranged artfully, but
the diagram logic also must be developed to support the interaction model.
Without the requisite attention to detail, it is just as easy to build a confusing and
ineffective GUI in LabVIEW as it is in any other programming language. On the
other hand, it is much easier to implement a great GUI using LabVIEW, provided
you attend to the preliminaries. Armed with a clearly defined interaction model
and an effective design plan, building a solid LabVIEW GUI is not only easy but
also enjoyable.

1.1.2 Benefits of a Well-Executed GUI

Now that the preliminaries are out of the way, here (as promised) are some of the
direct benefits of enhanced GUI design:

� Improved usability leads to higher user productivity and lower long-term costs.

� Planning required for a complete, effective GUI improves the overall integrity
of your application.

� A clean GUI, with clear and obvious methods of interaction, improves the reli-
ability and safety of mission-critical applications.

� Users often perceive the level of developer commitment based on GUI “look
and feel.” A well-designed GUI translates to improved user confidence.

� Improvements to visual presentation and usability make software more mar-
ketable.

� A clear, attractive GUI design can open the lines of communication.

Bold statements, you say? Let’s have a closer look at these points.

Improved Usability Leads to Higher User Productivity and Lower
Long-term Costs. When a GUI is planned effectively and integrated properly,
a number of usability benefits are realized, including

� Shorter user learning curves and lower training costs

� Better user comprehension of system capabilities

� Better user acceptance of the application

4 Chapter 1

200094_CH01/Ritter 9/12/01 4:20 PM Page 4

� Higher levels of user confidence-both in the capabilities of the program and in
the ability to use it

� Higher levels of user productivity-increased efficiency and fewer errors

The underlying theme here is user satisfaction. No one wants to work for sev-
eral hours a day with a difficult, confusing, or frustrating computer program—life
is too short for that! If an operator or end user experiences a sense of satisfaction
using your program, then the program is more likely to be used. Managers are less
likely to hear complaints and, therefore, are less likely to look for a replacement
program (or programmer!), and experienced operators are less likely to look for
work elsewhere. Lower operator turnover means reduced training costs—and more
experienced operators. All of this adds up to higher productivity and lower costs.
But wait, there’s more.

Planning Required for a Complete, Effective GUI Improves the Overall
Integrity of Your Application A clean, logical, streamlined user-interaction
model does not just happen; like all critical aspects of your application, an effec-
tive GUI requires careful planning and consideration throughout all stages of the
development process. The good news is that advanced planning for the GUI will
force you to consider carefully your application’s architecture and data structures
from the point of view of GUI integration.

For example, if the goal of your application is to collect and present some use-
ful data to the user (as is the case with the majority of LabVIEW programs), it
only makes sense to design the data structures with some awareness as to how the
data will be displayed. A data structure that is sympathetic to the needs of the GUI
will make for a cleaner diagram; output data will not need as much unbundling,
indexing, and reorganization for display. Also, if your application uses large arrays
or large, complex data structures, attention to the GUI before embarking on the
design phase can offer additional benefits. Planning for GUI output can prevent a
proliferation of large-array copies. Fewer copies of large data sets means fewer
calls to the memory manager and improved overall performance.

Attention to the GUI will force you to be conscious of the front-panel implica-
tions of every element you add to the diagram—both visually and logically. To
keep the panels uncluttered and comprehensible, you may discover that large dia-
grams can be split into smaller components. As a bonus, you are sure to discover
that some of these smaller components can be generalized, improving the possi-
bility for code reuse.

In addition, if you consider the GUI before planning the overall architecture of
your application, you will have an opportunity to develop a detailed plan for when
(and how) sub-VIs are called. This is the time to verify the logic and consistency
of your GUI design—before the actual coding phase starts. Even informal proto-
typing and usability testing will reveal which GUI items are essential and which
are unnecessary. By eliminating the unnecessary and focusing on the crucial, you

The Case for a Superior GUI 5

200094_CH01/Ritter 9/12/01 4:20 PM Page 5

will streamline the development process and focus your efforts. The final by-prod-
uct ultimately will be a higher-quality application, one that is easier to modify,
upgrade, and maintain.

A Clean GUI with Clear and Obvious Methods of Interaction Improves
the Reliability and Safety of Mission-Critical Applications. Mission-
critical industrial applications put additional demands on the GUI. If an operator
error could lead to a forced shutdown or, worse, a potentially hazardous situation,
then the accuracy of operator actions is crucial. While any properly designed soft-
ware control system destined for industrial uses necessarily will have hardware
interlocks to prevent a catastrophic failure, interlocks should not be depended on
to compensate for an inferior or confusing GUI design.

The advantage of a clean, direct GUI design becomes most obvious in times of
crisis. While operators may learn to navigate a complex GUI layout under normal
circumstances, consider what happens as a critical situation develops. As the oper-
ator begins to experience stress, the regular sequence of cool, reasoned actions
gives way to a series of autonomic responses. If the GUI design is clear and the
important emergency response functions are readily apparent, the chance of stress-
related errors will be minimized. Improved system reliability and safety will be
the direct result.

Users Often Perceive the Level of Developer Commitment Based on
GUI “look and feel,” and a Well-designed GUI Translates to Improved
User Confidence. The degree of planning, attention to detail, and quality of
the underlying code often are reflected in the GUI. When a developer is truly com-
mitted to quality, all aspects of the application reflect this commitment. If the GUI
is considered carefully during all phases of planning and development, user inter-
action flows smoothly and logically. If the visual presentation is consistent and pro-
fessional, it usually indicates an organized and professional approach throughout.
Alternatively, an inconsistent GUI with poor attention to detail may reflect inade-
quate planning or a lack of commitment to quality—it is unlikely that the user will
assume the “invisible” aspects of the application were crafted meticulously if the
“visible” aspects exhibit a lack of attention, inconsistencies, or other problems.

Improvements to Visual Presentation and Usability Make Software
More Marketable. Answer this: What kind of first impression does your
application make? The development cycle for large applications can be long, with
a number of twists and turns along the way. It can be difficult to remain subjec-
tive throughout this process, so sometimes the best way to gauge the impact of
your application is through the eyes of a nonpartial third party.

Enlist the help of a friend or colleague, and while your “appointed critic” is hav-
ing a look, get a candid answer to this question: Does the visual appearance inspire
an immediate sense of quality? Remember, purchasing decisions generally come
early on; customers may not have time or opportunity to dig too deeply into the

6 Chapter 1

200094_CH01/Ritter 9/12/01 4:20 PM Page 6

finer details of your offerings, so decisions to purchase your product or service
may depend heavily on initial impressions of quality. Because large companies
devote extensive resources to the packaging and appearance of products, pleasing
visual design is a pervasive expectation for all types of products. If you want your
application to present a professional image, the GUI panels will have to look good.

Properly managed, the visual aspects of your GUI can provide a competitive
advantage. Unusually distinctive visual presentation enhances product differenti-
ation. If all your competition offers the same, drab, unimaginative interface
design, a visually exciting alternative will be a breath of fresh air to potential cus-
tomers and clients. If being remembered is half the battle in a competitive mar-
ketplace, a striking GUI can be your secret weapon.

Extra effort devoted to the “look” of your panels can provide other spin-off ben-
efits you may not have considered. For example, screen captures of well-crafted,
clean user-interface panels will be welcome additions to your marketing materi-
als—brochures, catalogs, and of course, the Web site.

Great looking, user-friendly software will inspire positive comments and “word-
of-mouth” reviews between friends and colleagues. Word-of-mouth endorsements
have been shown to be many times more effective than conventional advertising
for generating new customers, so if your application can elicit good reviews, invari-
ably this will have a positive effect on the bottom line.

And while creating an immediate sense of quality is mandatory for the success
of commercial applications, its value to in-house projects should never be over-
looked either. As pointed out previously, a sense of quality will ensure user accep-
tance and confidence in the application.

Clear, Attractive GUI Design Can Open the Lines of Communication.
Another area where a high-quality GUI can be useful is in the area of internal com-
munications. Many technical people find it challenging to communicate sophisti-
cated or abstract technical concepts to managers with limited technical experience
or training; a background in business management or accounting is not the most
suitable prerequisite for understanding closed-loop feedback control strategies. A
clearly focused GUI can be helpful in these instances. Stepping through your well-
designed GUI with nontechnical decision makers will help them to “visually” com-
prehend the essence of your message. Even without a complete understanding of
the technical terminology and underlying scientific principles, this “show and tell”
approach can be substantially more effective than verbal communications alone.

1.1.3 Return on Investment

All these benefits do not come without a price. The additional effort devoted to GUI
design and planning likely will increase the time it takes you to finish each project
—particularly if GUI planning has not been a high priority in the past. Extra devel-
opment time invariably equates to higher development cost. On the other hand, if
long-term costs are factored into the equation, the scales quickly tip in your favor.

The Case for a Superior GUI 7

200094_CH01/Ritter 9/12/01 4:20 PM Page 7

While no comprehensive test data have been compiled specifically for LabVIEW
development, several UI[JKM2] cost-benefit studies have been completed for
conventional software development. For example, in one study focusing on in-
house software development and deployment, accrued cost savings were calcu-
lated to be more than US $65,000. Other studies on commercial products produced
substantially larger savings (Eberts, 19XX[JKM3], pp.12-18). According to
sources at IBM, every dollar invested in ease of use returns $10 to $100. IBM goes
on to say: “In certain cases, training sessions have been shortened from 1 week to
1 day or 1 hour, saving the companies thousands or even millions of dollars.
Significant savings of help-desk calls and service costs are another added bonus
when products are made to meet user needs” (IBM Web site, May 2000; URL:
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/79).

These claims recognize one of the key realities of running any business: Human
costs represent the highest proportion of a company’s operating expenses.
Assuming that your application will be run several hundred times during its use-
ful life span, saving even a couple of minutes of the operator’s time per run will
quickly add up to several hours. If the program is intended to run continuously
under human operator control, consider the value of even a modest usability
improvement of 10 percent. Obviously, cost savings multiply as the number of
users increases. If several users will operate the program concurrently or you are
developing a networked application that serves data to people throughout a large
organization, the aggregate human cost savings over the life span of the applica-
tion could easily equate to tens or even hundreds of thousands of dollars. And
because easy-to-use software is more likely to have a long and useful life, the extra
investment in your GUI will save an additional, often overlooked hidden cost-the
cost of developing a replacement program.

Directly measurable human cost savings are only part of the whole cost-bene-
fit picture, however. Improvements in usability also can contribute in other indi-
rect but equally dramatic ways to the bottom line. Improved efficiency, faster time
to market, enhanced customer satisfaction, improved employee moral-these qual-
ities and others are the universal goals of modern business. With the current trend
toward open markets and a global economy, it is not difficult to see why. Quality
issues are becoming increasingly important to business survival, and well-designed,
efficient, easy-to-use software can play an important role in acquiring and pre-
serving a competitive advantage.

Granted, differences do exist between LabVIEW graphic programming and
conventional code-based methods. When reviewing the results of cost-benefit
studies compiled in connection with conventional development, these differences
should be kept in mind. However, similarities between the underlying user goals-
regardless of the development system—indicate that similar long-term benefits
and cost savings can be realized in the context of LabVIEW application design.
After all, when a frustrated user is staring blankly at the screen, trying to figure
out what to do next, it does not make much difference whether the programmer
typed the code into a text editor or wired a LabVIEW diagram. The clock is tick-

8 Chapter 1

200094_CH01/Ritter 9/12/01 4:20 PM Page 8

ing, and from the user’s point of view, the details of construction are neither rel-
evant nor helpful. What is important here is how easy it is for the user to find a
solution and get back to being productive. The point where the goals of user,
employer, and GUI designer intersect is the point where the user is experiencing
maximum productivity and efficiency. It is the responsibility of the GUI designer
to make this point plainly visible to the user or to provide useful signposts when
it is obscured. Challenging? Unquestionably, but the payoff is well worth the
investment.

1.1.4 Make Your Own Case

The preceding section summarized a number of key benefits realized through bet-
ter GUI planning and integration. With further consideration, you may come up
with some additional ideas of your own. And while some of these points may res-
onate more than others—depending on your own experience and biases—it all boils
down to a single underlying theme: Quality GUI design is important. Critically
important. As you devote more energy to quality GUI design, you will discover
rewards on a personal level as well. Watching a new operator, with little or no train-
ing, quickly and efficiently navigating your interface inspires a sense of pride and
accomplishment. This is, after all, the noble goal of the interface designer: to pro-
vide a comfortable, supportive, and efficient virtual environment so that people
can get some work done.

1.2 What Defines a Superior GUI?

Understanding the benefits of a high-quality GUI is only one part of the complete
picture. While it is great to see what can be expected as the payoff for additional
effort, there is a detail that must be addressed: What exactly is a superior GUI?
How will you know it when you see it, and—more important—what steps can be
taken to ensure that your own GUIs are superior GUIs?

Answers to these questions, as you may have guessed, will take the remaining
pages of this book to develop. Unfortunately, there are no shortcuts. As a point of
departure, however, consider the following empirical observations:

Certainly, aesthetic considerations must figure into the equation—it is hard to
imagine a truly superior GUI that is visually unappealing (see Figure 1-1).
However, visual presentation is only one part of the whole story. As we will soon
discover, “look and feel” elements become less critical as the user gains more expe-
rience with the application. Unquestionably, the effectiveness of any user inter-
face extends far deeper than the “look and feel” of the GUI panel. The true measure
of an effective GUI lies in the concepts underlying the methods of interaction—
the stuff “below the surface” that determines how quickly and easily a user can
realize the intended goals of the application. We will look at this more closely in
the next chapter.

The Case for a Superior GUI 9

200094_CH01/Ritter 9/12/01 4:20 PM Page 9

To achieve a transparent, intuitive interface, energy must be devoted to seeing
the problem through the eyes of the intended user. All aspects of the user’s prob-
lem and how to solve it must be understood: the steps that must be taken, the
desired output, what information is needed by the user, how to clearly present infor-
mation on the screen, the relative frequency and importance of tasks, and so on.
Only through a complete understanding of the needs of users can you hope to build
a truly effective interface.

So then, our definition of a superior GUI is simply: a GUI that the user finds
both visually appealing and functionally capable. Fair enough. But what about the
notion that “beauty is in the eye of the beholder”? Surely, evaluating the appear-
ance of a GUI is problematic—after all, what you find “visually appealing” may
not fit with the user’s definition. Certainly, in matters of personal taste, there is no
universal definition.

While it cannot be denied that the aesthetic quality of any GUI is highly sub-
jective, it is important to keep your goal in perspective. Your design does not have

10 Chapter 1

Figure 1-1 Clean, organized panels inspire confidence and add a professional veneer to your applications.

200094_CH01/Ritter 9/12/01 4:20 PM Page 10

to be the GUI equivalent of the Mona Lisa to be acceptable to the user—it just
has to present a clean, professional image. By applying a few basic principles of
graphic design, not only will you avoid the embarrassing design mistakes fre-
quently made by novices, but you also may discover that it is relatively easy to
build professional-looking panels. (The issue of graphic design will be covered in
Chapter 6, “Graphic Design for Engineers 101—A Crash Course in Layout and
Design.”)

And what about functionality? Aren’t evaluations of the functionality extremely
subjective as well?

This question raises an important point about the universality of user interfaces
in general. What exactly defines ease of use, and why does one design seem more
intuitive to some people than it does to others? The answer to this question will
surface in Chapter 5, “From Task Definition to GUI Design,” but before we can
effectively delve with this thorny issue, the mental process of human-computer
interaction must be explored. In the next chapter we will begin our journey by
exploring the psychological aspects of human-computer interaction, but first, there
are a few personal questions.

1.3 Assessing Your Own GUI Abilities

How convincing are your existing GUIs designs? What are the strengths and weak-
nesses of your best VI panels? Before diving into specific GUI improvement strate-
gies and techniques, take a moment to evaluate the current state of your GUI design
awareness.

Start by selecting a few of the VIs you have developed in the past. Try to choose
your best GUI VIs—the ones that represent the current peak of your GUI design
abilities. Take a critical look at each of these VIs. Examine them and note their
strengths and weaknesses. For example: What do you like about the VIs? What
do you dislike and why? Are there any problems? Can you identify the source of
problems? Try to be as objective as possible and record any observations that occur
to you.

Evaluate your designs with regard to the following qualities:

The “look”

� Aesthetic quality of the organization and layout

� Color choices

� Font choices

� Graphic elements

� Overall visual impression

� Consistency

The Case for a Superior GUI 11

200094_CH01/Ritter 9/12/01 4:20 PM Page 11

The “feel”

� GUI object choices—Does behavior match functionality?

� GUI object location, proximity—How do these affect task flow?

� Access to critical and frequently used items

� Navigation and freedom of movement

� Appropriate feedback for each user action

� Interface text: button, menu, and dialog labels and messages

Conceptual elements

� System metaphors

� Ease of use

� The power of each GUI action

� Depth of GUI

� Flexibility and the capacity for growth and change

Take a few moments to jot down your impressions. If there is something about
a VI panel that you cannot quite put your finger on—a general perception, either
good or bad—make a note of this too. Next, save these notes in a notebook or enter
them into a word processor file and save them in a directory with a copy of each
of the VIs you have analyzed.

At the end of this book, you will be invited to have another look at these pre-
liminary notes. The understanding acquired through reading the intervening mate-
rial should provide you with a finely tuned critical eye for spotting flaws and some
practical steps for correcting problems and improving the overall design. By com-
paring these preliminary notes with the notes prepared at the end of this book, you
will have a very real measure of the understanding you have gained. So take a
moment now to make some notes. Chapter 2 will be waiting when you are finished.

12 Chapter 1

200094_CH01/Ritter 9/12/01 4:20 PM Page 12

